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1.0 Introduction 

This document describes both the generation and application of RPC uncertainty parameters.   

The Rational Polynomial Coefficient (RPC) sensor model and corresponding image support data 

are widely used in the geopositioning community and are intended to replace the physical sensor 

model and its corresponding image support data.  The RPC uncertainty parameters are included 

in the RPC image support data and represent its uncertainty or errors.  The RPC image support 

data is generated “upstream” of the user community (RPC exploiters) using the physical sensor 

model and its corresponding image support data. 

Although RPC is convenient for the down-stream user community, it is only an approximation 

for the physical sensor model.  Also, there is a significantly better replacement sensor model 

available than RPC that has virtually no approximation error relative to all physical sensor model 

functionality.  It is termed “RSM”, with detailed documentation in the Manual of 

Photogrammetry [1], and with an easy-to-read introduction and overview in [8].  There are also 

CSM-compliant RSM Generator and RSM Exploiter s/w modules now available for automatic 

RSM generation and exploitation [2].   

However, that being said, the remainder of this document addresses RPC exclusively due to both 

its current wide-spread availability and related and significant issues.  The issues are: (1) there 

are currently various and conflicting definitions of the RPC uncertainty parameters, and (2) for 

an assumed definition, there are cases of incorrect implementation for both their generation and 

application.  The first issue, along with a development “history” for RPC, is discussed further in 

Appendix B.   

RPC Uncertainty Parameters 

This document presents the Sensor Geopositioning Center (SGC) recommended definition of the 

RPC uncertainty parameters and computational details for both their correct generation and 

application.  In the SGC definition, RPC uncertainty parameters consist of two image-dependent 

scalars, er and eb, and two image-independent scalar correlation functions, cort and corp.  Er 

and eb have units of meters and are explicitly included in the RPC image support data for each 

image.  (They are also termed ERR_RAND and ERR_BIAS.)  Er is a one-sigma value that 

represents a random or “unmodeled” error across the image, and eb is a one-sigma value that 

represents a systematic or bias error across the image.  Systematic errors are associated with 

errors in the physical sensor model’s adjustable parameter values (e.g., sensor position and 

attitude), and unmodeled errors all remaining “high frequency” errors.  Both er and eb are 

expressed relative to a local horizontal tangent plane corresponding to the center of the image 

and a nominal elevation. 

Cort is a scalar temporal correlation function (          to be published by the image vendor 

and represents the temporal correlation of systematic errors between same-pass images separated 
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in time by    seconds.  It can vary by sensor type, but is seldom changed by the vendor.  

Similarly, corp is a scalar correlation function (             to be published by the image 

vendor and represents the correlation of unmodeled errors between two pixel locations within the 

same image and separated by    lines and    samples.  It can vary by sensor type, but is also 

seldom changed by the vendor.  Correlation of errors has a significant effect on error 

propagation.  In particular, the evaluation and correct use of cort has a significant effect on stereo 

absolute error propagation, and corp a significant effect on mono relative error propagation.   

Note that the SGC definition of RPC uncertainty parameters requires no change to the current 

RPC meta-data NITF tagged record extension RPC00B described in Appendix C.  The “new” 

RPC uncertainty “parameters”, the functions cort and corp, are vendor published, and not 

included in RPC00B. 

Adoption of this document by the various RPC generators (commercial imagery vendors) and 

RPC exploiters (tool vendors) will allow for consistent and optimal use of RPC uncertainty 

parameters  - a benefit to all in the geopositioning community.  Uncertainty parameters are the 

basis for error propagation or accuracy predictions.  In many applications, reliable accuracy 

predictions are as important as the extracted ground coordinates.  In addition, uncertainty 

parameters affect the ground coordinates themselves in stereo extraction and, more generally, in 

multi-image extractions.  

CSM-compliant Algorithms 

Both the RPC uncertainty parameter generation algorithm and RPC exploitation algorithms 

documented herein are generic CSM-compliant algorithms, although supporting detail allows for 

non-use of a CSM interface if necessary.  The exploitation algorithms perform error propagation 

for monoscopic and stereo imagery.  Corresponding details for simultaneous and optimal 

extraction of ground coordinates are also included. 

 Thus, for example, a generic CSM-compliant sensor exploitation tool (SET) is capable of 

rigorously exploiting any CSM-compliant plugin in a sensor agnostic way; i.e. the SET doesn’t 

care whether the plugin is a physical sensor model or a replacement sensor model such as an 

RPC.   Hence, the most logical approach is for the community, i.e. all SET vendors, to have a 

single CSM-compliant RPC plugin to use to exploit any imagery whose RPC00B TRE is 

populated.  From the commercial satellite imagery standpoint, this eliminates the need to have a 

specific WV OR2A CSM  plugin, which exploits RPC00B; a specific WV 1B CSM plugin, 

which exploits its RPC00B; a specific 1B CSM plugin for GeoEye1, which exploits its RPC00B; 

a specific OR2A CSM plugin for GeoEye1, which exploits its RPC00B; etc.  Of course, such an 

approach requires that all image vendors, e.g. DigitalGlobe and GeoEye, populate the elements 

of the RPC00B TRE using the same approach.  Our experience shows that even when an image 

vendor has been given the opportunity to build their own RPC Generator and RPC Exploiter, the 
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resulting uncertainty propagation from the RPC is inconsistent with that from the physical sensor 

model. 

Metric Performance 

Appendix A presents a detailed comparison of extraction and error propagation based on the 

physical sensor model and based on its RPC counterpart for commercial satellite imagery.  Both 

the generation and application of RPC uncertainty parameters are per this document. 

In particular, extraction and error propagation results using both DigitalGlobe and GeoEye 

imagery are presented.  Both single and stereo pair imagery are analyzed, and both the physical 

sensor model and the RPC sensor model generated using the physical sensor model are 

exercised.  Differences between results based on the physical sensor model and results based on 

RPC are presented.  Error or uncertainty ellipses are also presented graphically and compared 

between the two sensor models 

 “Bottom line” results: mono and stereo extraction and error propagation results are nearly 

identical using the physical sensor model and using the RPC sensor model, assuming the use of 

the SGC recommended definitions and algorithms.  In particular, extraction results do not differ, 

and the largest absolute error propagation difference corresponds to 7% for stereo LE (0.9p 

absolute vertical error), and the largest relative error propagation difference corresponds to 15% 

for mono CE (0.9 p relative horizontal error).  Note that these differences were compiled over all 

mono and stereo test cases involving 8 different images and 3 different stereo pairs.  Images 

correspond to a mix of WorldView-1, WorldView-2, and GeoEye-1 sensors. 

 The above results are significantly better than those achievable using previous definitions and 

algorithms associated with RPC uncertainty parameters.  Previous definitions/algorithms 

typically yield error propagation differences between the physical and RPC sensor models on the 

order of 100% or larger for either absolute or relative accuracy.  This is discussed further in 

Appendix A.  

The SGC-based comparison results discussed above assume a zero polynomial fit error for the 

RPC ground-to-image function relative to the physical sensor model’s ground-to-image function.  

When polynomial fit error is also included, as per the baseline algorithms, RPC error propagation 

(accuracy prediction) is correctly and correspondingly larger than the physical sensor model’s 

error propagation, in accordance with polynomial fit error statistics.  For the polynomials 

contained in the RPC00B of the vendor supplied image meta-data, polynomial fit error ranged 

from 0.25 to 4 pixels per image, one-sigma.  The latter value can have a significantly adverse 

effect on the absolute accuracy of an extracted ground point, and even more so, on the relative 

accuracy between two points extracted in the same image. 

Figure 1 presents representative 3D (one-sigma) error ellipsoids based on error propagation and 

corresponding to the stereo extraction of a ground point using a pair of same-pass images from 
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one of the above commercial satellite sensors.  Both the RPC error ellipsoid and physical sensor 

model error ellipsoid are presented together for comparison, with the RPC error ellipsoid 

generated assuming no polynomial fit error.  Note that the two error ellipsoids are nearly 

identical using the SGC recommended definitions and algorithms.   

 

Figure 1: RPC vs Physical Average 3D (One-Sigma) Error Ellipsoid (No Poly Fit Error) 

However, when RPC polynomial fit error is included, the RPC ellipsoid is inflated accordingly 

and correctly as illustrated in Figure 2.  Polynomial fit error statistics were approximately 4 

pixels, one sigma, across the image and computed based on a grid of check points. 
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Figure 2: RPC vs Physical Average 3D (One-Sigma) Error Ellipsoid (With Poly Fit Error)  

Roadmap 

Sections 2-4 go on to describe the various RPC uncertainty parameter generation and application 

algorithms in detail.  Section 5 presents references.  Numerous appendices then follow which 

provide various background information and further details when warranted.  As mentioned 

earlier, Appendix A presents detailed performance results, and Appendix B a “development 

history” of RPC.    Another major appendix is Appendix K.  It presents trade studies under taken 

by the SGC in order to select the appropriate RPC uncertainty parameter definitions and 

algorithms.  The major trade study involved the selection of the ground plane used to represent 

RPC uncertainty , i.e., the ground plane referenced by er and eb.  The local horizontal tangent 

plane was selected.  The other candidate was a ground plane perpendicular to the imaging line-

of-sight vector.  

 

2.0 Generation of RPC Uncertainty Parameters 

The following describes the generation of RPC uncertainty parameters: er, eb, cort, and corp.  

Their generation assumes access to the physical sensor model via the CSM API for the image. 

2.1 Assumptions 
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Er, eb, cort, and corp are to be computed on a per image basis, i.e., a stereo pair of images is 

neither required nor used for their generation. (Cort and corp are actually vendor pre-computed, 

image-independent, correlation functions as discussed below.) 

In the following, subscript “S” corresponds to sensor support data adjustable parameters/errors, 

subscript “U” to sensor unmodeled errors, and subscript “TU” to total unmodeled errors.  The 

latter includes the effects of RPC polynomial fit error.  Appendix D discusses the various sources 

of unmodeled error and their characteristics. 

The temporal correlation of sensor support data errors between the current image and other 

“same-pass” images is accounted for via the function cort.  The correlation of total unmodeled 

errors between two locations within the same image is accounted for via the function corp.  

The physical sensor model corresponds to the appropriate image for which RPC uncertainty 

parameters are to be generated.  That is, if the image is unrectified, the physical sensor model 

corresponds to the unrectified image.  If the image is rectified (also known as “Ortho-Ready” in 

the commercial optical satellite imaging community), the physical sensor model corresponds to 

the rectified image.  See Appendix E for a summary of conversion between these two physical 

sensor models. 

2.2 Inputs 

The following are inputs to the RPC uncertainty generation algorithm corresponding to a grid of 

points (i=1,..,25) spread evenly across the entire image in a 5x5 grid (such that the edges of the 

grid align with the edges of the image): 

         , the image line and sample location and corresponding nominal elevation at grid point i, 

with units of pixels, pixels, and meters, respectively. 

    , the 2x2 unmodeled error covariance for the physical sensor model relative to line and 

sample coordinates at grid point i, with units of pixels-squared for all components; 

   , the nxn support data error covariance for the physical sensor model corresponding to n 

(active) image support data adjustable parameters (units are adjustable parameter specific); 

    , the 2xn matrix of partial derivatives of line, sample with respect to the physical sensor 

model’s n adjustable parameters, evaluated at the nominal ground point location              , 

where     is the CSM API image-to-ground function (and     the ground-to-image function).  

The units of the components of     are pixels/(unit of the particular adjustable parameter). 

    , the 2x3 matrix of partial derivatives of line, sample with respect to   in units of 

pixels/meter evaluated at the grid point i location    equal to              .  The ground point 

location is represented in the primary coordinate system (WGS 84 ECF). 



 

10 
Approved for Public Release: Case # 11-463 

   , the 2x2 error covariance corresponding to RPC polynomial fit error relative to line and 

sample coordinates corresponding to an arbitrary location across the image, with units of pixels-

squared, and assumed generated by an RPC polynomial fit function using a dense set of check 

points across the image (not fit points) that also span the volume between minimum and 

maximum heights in the ground space.   

2.3 Outputs 

The following are outputs from the RPC uncertainty parameters generation algorithm: 

   in meters,    in meters, and the functions          (unit-less) and             (unit-less). 

2.4 Computations 

   
     {  

          
   

  }               (1) 

   
     {  

       
  }               (2) 

   
     {  

      
  }               (3) 

In the above equations,   {}  corresponds to the scalar 0.9 p circular error computed using an 

argument consisting of a 2x2 covariance matrix.  See Appendix F for a detailed description of the 

CE{} function.  Also, the superscript “   “ indicates the transpose of the matrix inverse. 

(When   {} is divided by 2.15 and then squared, it can be a more accurate estimate of the 

appropriate error variance than the simpler estimate      {}   , where      {} is the trace of 

the 2x2 covariance matrix, i.e., the sum of its two diagonal elements.  This occurs when the error 

ellipsoid corresponding to the 2x2 covariance matrix is significantly non-circular, i.e., the semi-

minor axis significantly smaller than the semi-major axis.) 

The computations corresponding to Equations (1-3) are performed for each grid point i.    
   is 

the inverse of    whose computation is detailed in Section 2.4.1.    
   is the 2x2 matrix of partial 

derivatives of ground plane coordinates with respect to image coordinates at grid point i, where 

the ground plane is the local horizontal tangent plane.     and    
    have units of pixels/meter 

and meters/pixel, respectively, for all components. 

Note that in Equation (1), the matrix     is used to map physical sensor model adjustable 

parameter uncertainty to image space, and the matrix   
    is then used to map the image space 

uncertainty to uncertainty in ground plane coordinates at grid point i.  The resultant    
  is the 

variance used to represent uncertainty or errors in both directions (axes) of the local horizontal 

plane.  Corresponding errors in these two directions are modeled as uncorrelated, i.e., the 

corresponding error ellipse is circular. 
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Some of the inputs used in Equations (1-3) are directly available via the CSM API for the 

physical sensor model:    via getCurrentParameterCovariance,     via getUnmodeledError, and  

    via computeSensorPartials, for grid points          .  

The following computations average the above results over all      grid points and then 

compute the RPC uncertainty parameters er and eb:  

  
  

 

 
∑    

  
             (4) 

  
  

 

 
∑    

  
             (5) 

  
  

 

 
∑    

  
             (6) 

   
    

    
           (7) 

      
    ⁄            (8) 

       
    ⁄            (9) 

In addition, there are two image-independent, vendor pre-computed, scalar correlation functions: 

         is the temporal correlation function between two same-pass images;  (10) 

            is the pixel location correlation function between two different pixel locations in 

the same image.          (11) 

Given a specific value    for the time between two same-pass images in seconds, the evaluation 

of          yields the correlation (coefficient) of RPC errors between the two images.  The 

corresponding RPC errors exclude total unmodeled errors.   

The function          is a “CSM four parameter correlation function” and is defined by four 

scalar parameters.  These four parameters are published by the commercial image vendor for a 

particular sensor and are image independent.   The specific definition of the four parameters and 

their pre-computation are detailed in Appendix G.  If the four parameters are unavailable from 

the vendor, a default set of values is also presented in Appendix G..  Note that this default set of 

values should be specifiable data base parameters. 

Given specific values    and    corresponding to the difference in line and sample pixel 

coordinates, respectively, for two locations in the same image, the evaluation of              

yields the correlation (coefficient) of RPC total unmodeled errors between the two locations.   

The function             is represented as the product of two “CSM four parameter correlation 

functions”, i.e.,                                . The two corresponding sets of four 

parameters are published by the commercial image vendor for a particular sensor and are image 
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independent.   Pre-computation of these parameters (the functions           and          ) by 

the vendor and its specific form are discussed further in Appendix G.  If the two sets of four 

parameters are unavailable from the vendor, a default set of values is also presented in Appendix 

G.  Note that these default values should be specifiable data base parameters. 

In summary, er and eb are computed via Equations 8-9 above and are to be placed in RPC00B on 

a per image basis.  The correlation functions          and             are to be published by 

the vendor in accordance with their general definitions above and their detailed definitions in 

Appendix G.  Since RPC00B does not have metadata fields associated with these two 

correlations functions, there parameter values are placed into a data base that can be read by the 

generic CSM compliant RPC during instantiation by the SET. 

2.4.1 Computation of image/ground plane partial derivative matrix  

The following matrix is defined as the 2x2 partial derivative matrix of image coordinates with 

respect to ground plane coordinates x*-y* for grid point i.  The ground plane is the local 

horizontal tangent plane at grid point i, with the x* direction corresponding to local south and the 

y* direction corresponding to local east (see Appendix K for a discussion of why this ground 

plane was selected as opposed to one perpendicular to the line-of-sight vector): 

   
        

 (  
    

 )
           (12) 

The   -    plane corresponding to an arbitrary grid point is illustrated in Figure 3: 
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Figure 3: RPC Uncertainty is represented in the local horizontal tangent plane 

The primary x-y-z ground coordinate system is assumed WGS-84 ECF, the coordinate system of 

the i2g output and g2i input via the CSM API. (When    is used as an input to an image-to-

ground call, it is assumed (converted to) an elevation.) 

Define       as the 3x3 primary-to-local tangent plane coordinate system (orthonormal) 

transformation matrix.  It is applicable at the ground (grid) point’s nominal location     

              as represented in the primary coordinate system (WGS 84 ECF).  The local tangent 

plane coordinate system is assumed ENU (east-north-up). 

    is the 2x3 matrix of partial derivatives of       with respect to   in units of pixels/meter 

evaluated at the location    .  And based on the chain rule for partial derivatives:   

   [

   

   
 

   

   
 

   

   
 

   

   
 

]                                       {           
  (

   
    
   

)}. 

            (13) 

 

3.0 Application of RPC Uncertainty Parameters: Monoscopic Error Propagation 
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This section details RPC error propagation for monoscopic extraction using er, eb, and corp. 

Section 3.1 details absolute error propagation and Section 3.2 relative error propagation.   All 

algorithms are sensor agnostic. 

If a CSM plugin is not available for RPC, relevant inputs must be obtained directly from the 

NITF and direct RPC sensor model functionality must be available.    

3.1 Monoscopic Absolute Error Propagation 

This section details absolute error propagation corresponding to one ground point.   

Note the corresponding optimal extracted ground coordinate is simply the output of the RPC 

image-to-ground function, or i2g (imageToGround) if the CSM interface is available.   

3.1.1 Assumptions 

Error propagation corresponds to the use of a baseline RPC adjustment model which consists of 

image line offset and image sample offset adjustments.  See Appendix K for a discussion on why 

these RPC adjustable parameters were selected. 

Vendors computing the RPC uncertainty parameters er and eb as described in Section 2 should 

also perform monoscopic absolute error propagation at arbitrary locations within the image using 

both the RPC and the physical sensor models.  Results are then compared for Quality Assurance, 

either “off-line” in a laboratory setting or “on-line” before dissemination of the RPC uncertainty 

parameters.  Error propagation results using the two sensor models should be reasonably close. 

3.1.2 Inputs 

The following are inputs to the RPC monoscopic absolute error propagation algorithm: 

   and   , for the image, with units of meters, respectively;    

           , the image coordinates in pixels corresponding to the ground point    of interest;  

   and      , the ground point’s a priori elevation in meters and its one-sigma uncertainty in 

meters, respectively (if an appropriate a priori elevation is not available, such as from a DEM, a 

reference point via the CSM API (getReferencePoint), or the height offset value of the RPC can 

be used); 

   , the 2x2 image space mensuration error covariance corresponding to    in units of pixels-

squared; 

              , the image coordinates in pixels and a priori elevation in meters corresponding 

to the center of the image.  

3.1.3 Outputs 
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The following are outputs from the RPC monoscopic absolute error propagation function: 

     , the 3x3 ground point solution error covariance matrix in units of meters-squared and 

converted to a local tangent plane coordinate system; 

CE and LE, the corresponding 90% (or 0.9 p) horizontal and vertical accuracy predictions, 

respectively, in meters. 

3.1.4 Computations 

      {      
 }  (      [

   
   
     

  
]      

     
           

       

   
     )

  

.            (14) 

In the above,   corresponds to expected value,      to the 3D error in the ground location   , 

and  {   }   , i.e., statistically the error is assumed unbiased.  (Note that, throughout this 

document, if a vector or matrix is set equal to 0, it is understood that all corresponding 

components are set equal to zero.)    

The following are supporting definitions/computations:       

    is the 2x3 matrix of partial derivatives of       with respect to   in units of pixels/meter 

evaluated at the location    equal to              .  The ground point location is represented in 

the primary coordinate system (WGS 84 ECF).      (15) 

    is the 2x2 matrix of partial derivatives of       with respect to the baseline RPC adjustable 

parameters.  Because these RPC adjustable parameters are line offset and sample offset, the units 

of      are pixels/pixels or unit-less, and           , the 2x2 identity matrix.      (16)  

    is the 2x2 a priori error covariance matrix of the RPC adjustable parameters in units of 

pixels-squared.            .        (17) 

The matrix   has units of pixels/meter and is computed as detailed in Section 2.4.1, with the 

exception that all     and     calls are via the RPC sensor model instead of the physical sensor 

model, and that image coordinates    and a priori elevation    , which correspond to the center of 

the image, are used instead of    and    corresponding to grid point i.   (18) 

Note that in Equation (17), the matrix   is used to map modeled RPC uncertainty in horizontal 

ground plane coordinates corresponding to the center of the image to RPC (image space) 

adjustable parameter uncertainty.  In particular,      [  
  

    ]  
        . 
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     is the 2x2 error covariance matrix of total RPC unmodeled error mapped to image space in 

units of pixels-squared.               .       (19) 

The matrix        is the local tangent plane to primary coordinate system (orthonormal) 

transformation matrix.  It is applicable at the ground point location   .  Note that        

      
         

  , where        is the primary to local tangent plane transformation.   (20) 

If a CSM plugin is available for RPC, the above      is directly available via imageToGround 

(with error propagation) and in accordance with Equation (14).   In addition, if needed,     is 

directly available via getCurrentParameterCovariance,     via getUnmodeledError,    via 

computeGroundPartials, and    via computeSensorPartials.  

Following the computation/receipt of      (Equation 14), the following final computations are 

performed: 

Convert      to a local tangent plane coordinate system representation:                  
  .              

            (21) 

Compute CE and LE using  , i.e.,       {    } ,        {    }.   (22) 

3.2 Monoscopic Relative Error Propagation 

This section details relative error propagation corresponding to two ground points measured in 

the same image.   

Note that the corresponding optimal extracted ground coordinate for both points is simply their 

respective output of the CSM image-to-ground function, or i2g (imageToGround), if the CSM 

interface is available for the RPC model.   

3.2.1 Assumptions 

Error propagation corresponds to the baseline RPC adjustment model which consists of image 

offset adjustments. 

Vendors computing the RPC uncertainty parameters er, eb, and corp as described in Section 2 

should also perform monoscopic relative error propagation at arbitrary point-pair locations 

within the image using both the RPC and the physical sensor models.  Results are then compared 

for Quality Assurance before dissemination of the RPC uncertainty parameters.  

3.2.2 Inputs 

The following are inputs to the RPC monoscopic relative error propagation algorithm: 

er and eb for the image, with units of meters; 



 

17 
Approved for Public Release: Case # 11-463 

           , the vendor published, image-independent, pixel location correlation function (unit-

less) with default values for its defining parameters specified in Appendix G if the published 

function is unavailable; 

           , the image coordinates in pixels corresponding to ground points    of interest, 

subscript      ;  

   and     , the a priori elevation in meters and its one-sigma uncertainty in meters, respectively, 

for ground points     ,       .  Because relative error propagation is to be performed,     

should statistically reflect random elevation errors only, i.e., not include any bias error between 

the two locations; 

 i, the 2x2 image space mensuration error covariance in units of pixels-squared for ground point 

image measurements            , subscript      ; 

              , the image coordinates in pixels and a priori elevation in meters corresponding 

to the center of the image;  

3.2.3 Outputs 

The following are outputs from the RPC monoscopic relative error propagation algorithm: 

      {[
      

       
 

      
       

 ]} , the 6x6 (two) ground point solution error covariance matrix in 

units of meters-squared and converted to local tangent plane coordinate system(s); 

CErel and LErel, the corresponding 90% horizontal and vertical relative accuracy predictions, 

respectively, in meters. 

3.2.4 Computations 

     ([
       

       
]  [

   
  

    
 ] ([

   

   
] [   ][   

    
 ]  [

         

     
     

]  

[
   
   

])
  

[
    
    

])

  

.         (23) 

The following are supporting definitions/computations:  

    is the 2x3 matrix of partial derivatives of       with respect to    ,       , in units of 

pixels/meter and evaluated at the location              .  The ground point location     is 

represented in the primary coordinate system (WGS 84 ECF).    (24) 
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    is the 2x2 matrix of partial derivatives of       with respect to the baseline RPC adjustable 

parameters.  The units of      are pixels/pixels or unit-less.            , independent of location 

   , and where      is the 2x2 identity matrix.          (25)  

    is the 2x2 a priori error covariance matrix for the RPC adjustable parameters in units of 

pixels-squared.            .        (26) 

The matrix   has units of pixels/meter and is computed as detailed in Section 2.4.1, with the 

exception that all     and     calls are via the RPC sensor model instead of the physical sensor 

model, and that image coordinates    and a priori elevation    , which correspond to the center of 

the image, are used instead of    and    for grid point i.     (27) 

     is the 2x2 error covariance matrix of total RPC unmodeled errors mapped to image space in 

units of pixels-squared.             , independent of location    ,      .  (28) 

      is the 2x2 error cross-covariance matrix of total RPC unmodeled errors mapped to image 

space in units of pixels-squared between the two locations.                        , where 

   |     | and     |     | .        (29) 

             [
   
   
     

  
]      

  ,      , where        corresponds to the ground location 

   equal to              .         represents the a priori information for the elevation of ground 

point i converted to the primary coordinate system.      (30) 

The matrix        is the local tangent plane to primary coordinate system (orthonormal) 

transformation matrix applicable at location    .  Note that              
  , where        is the 

primary-to-local tangent plane transformation.        (31) 

If a CSM plugin is available for RPC, the above      is directly available via 

getCurrentParameterCovariance,       via getUnmodeledError,        via 

getUnmodeledCrossCovariance,     via computeGroundPartials, and     via 

computeSensorPartials,        .  

Following the computation of      (Equation 23), the following final computations are 

performed: 

Convert      to a local tangent plane coordinate system representation: 

     (
      

      
)    (

     
  

      
 ) , where       is the local tangent plane to 

primary coordinate system (orthonormal) transformation matrix applicable at location      

                  (32) 



 

19 
Approved for Public Release: Case # 11-463 

Compute CErel and LErel using     .       (33) 

Note: if we express the 6x6      with 3x3 blocks,       [
            

            
], CErel and 

LErel equal  CE and LE computed using the 3x3 relative covariance matrix         

                             , i.e., 

         {       } ,           {       }.      (34) 

 

4.0 Application of RPC Uncertainty Parameters: Stereo Error Propagation 

This section details RPC (absolute) error propagation for stereo extraction using er, eb, and cort 

from two same-pass stereo images. All algorithms are sensor agnostic. 

Note that the error propagation algorithm is an inherent part of an optimal Weighted Least 

Squares (WLS) stereo extraction algorithm.  See Appendix H for the entire WLS solution 

algorithm that includes computation of a best estimate of ground point location. 

4.1 Assumptions 

Error propagation corresponds to the baseline RPC adjustment model which consists of image 

offset adjustments per image.  See Appendix H for generalization to an RPC adjustment model 

that also includes rate terms. 

 Vendors computing the RPC uncertainty parameters er, eb, and cort as described in Section 2 

should also perform absolute stereo error propagation at arbitrary locations within the images 

using both the RPC and the physical sensor models.  Results are then compared for Quality 

Assurance.  

The following algorithm assumes two same-pass images.  If they are not correlated (same-pass 

images), simply set the value of the correlation coefficient      in the following algorithm. 

4.2 Inputs 

The following are inputs to the stereo error propagation algorithm: 

          with units of meters for the two images       

         is the vendor-published, image-independent, temporal correlation function (unit-less) 

with default values for its defining parameters specified in Appendix G if the published function 

is unavailable;   (     ), the image coordinates in pixels corresponding to the ground point   

of interest for the two images, subscript      ; 

   , an  a priori elevation in meters for the corresponding ground point; 
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   , the 2x2 image space mensuration error covariance in units of pixels-squared for image      

; 

    (           ) , the image coordinates in pixels and a priori elevation in meters 

corresponding to the center of image j;  

4.3 Outputs 

The following are outputs from the stereo error propagation algorithm: 

     , the 3x3 ground point solution error covariance matrix in units of meters-squared and 

converted to a local tangent plane coordinate system; 

CE and LE , the corresponding 90% (0.9p) horizontal and vertical accuracy predictions, 

respectively, in meters. 

4.4 Computations 

     

([
   

   
]
 

([
    
    

] [
          

     
      

] [
   

  

    
 ]  [

     
     

]  [
   
   

])

  

[
   

   
])

  

. 

            (35)  

The following are supporting definitions/computations:  

    is the 2x3 matrix of partial derivatives of       with respect to   for image j in units of 

pixels/meter and evaluated at the a piori ground point location         (              

             ) , where the i2g function (iterative inverse of RPC ground-to-image polynomial) 

is image dependent.    (Note that the subscript in     corresponds to one ground point and one of 

two images, not one of two ground points and one image as in section 3.2 on monoscopic 

relative error propagation.)          (36)  

    is the 2x2 matrix of partial derivatives of       with respect to the baseline RPC adjustable 

parameters for image j.  The units of      are pixels/pixels or unit-less, and         ,       .    

            (37)  

      is the 2x2 a priori error covariance matrix of the RPC adjustable parameters in units of 

pixels-squared for image j.           
     

 .      (38) 

The matrix    has units of pixels/meter and is computed as detailed in Section 2.4.1, with the 

exception that all     and     calls are via the RPC sensor model instead of the physical sensor 

model, and that image coordinates    and a priori elevation    , which correspond to the center of 

image j, are used instead of    and    corresponding to grid point i.    (39) 
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      is the 2x2 a priori cross-covariance matrix of the RPC adjustable parameters for images 1 

and 2, in units of pixels^2.                      
  , where           , evaluated at the 

specific delta time    |     | between the two images.      (40) 

If a CSM plugin is available for RPC, the reference time for an image is via 

getReferenceDateAndTime.  (If a CSM plugin is not available for RPC, use the physical sensor 

model CSM plugin instead.  If neither are available, obtain the time directly from the 

corresponding NITF TRE.)  Set     above to the reference time in seconds for image        .  

     is the 2x2 covariance matrix of total RPC unmodeled errors mapped to image space in units 

of pixels-squared for image j.          
     

 .      (41) 

If a CSM plugin is available for RPC, the above        is directly available via 

getCurrentParameterCovariance,       via getCovarianceModel,       via getUnmodeledError, 

    via computeGroundPartials, and     via computeSensorPartials, image        . 

Following the computation of      (Equation 35), the following final computations are 

performed: 

Convert      to a local tangent plane coordinate system representation:                
  , 

where        is applicable at the nominal location    .    (42) 

Compute CE and LE using  , i.e.,      {    } ,        {    }.   (43) 
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Appendix A: Comparison of Results: Physical versus RPC Sensor Model 

 

This appendix compares mono and stereo extraction and error propagation results based on the 

physical sensor model and based on the corresponding RPC sensor model.  Both RPC 

uncertainty parameter generation and monoscopic and stereo extraction/error propagation are per 

the main body of this document. 

 

REMAINDER OF THIS APPENDIX REMOVED IN THIS VERSION OF THE DOCUMENT 

AS CONSIDERED: company sensitive. 
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Appendix B: “Status of RPC Error Model, SGC, 14 March 2011” with Postscript 

 

Status of RPC Error Model 

   SGC, 14 March 2011 

 

This document provides a summary of the status of the RPC error model from a generator (CI 

vendor) and exploiter (tool vendor) standpoint, and some options for consideration.  Let us begin 

by stating that an error model must be able to support uncertainty estimation for two main 

scenarios:  1) calculation of dimensions that involves measurements of multiple points in 

typically one image; and 2) extraction of absolute geolocation of target coordinates by measuring 

the point in one or more images.  Let us term these scenarios “relative mensuration” and “target 

extraction”, respectively. 

To allow both scenarios, three error terms are required in a simple-minded world where:  1) 

errors are categorized as either random or bias; 2) the imaging loci are essentially parallel at 

multiple pixel locations within an image, thereby eliminating perspective effects; and 3) error 

magnitudes are equal per-axis (e.g., circles instead of ellipses) and also assumed equal per same-

pass image.  Further note that these error terms correspond to support data errors only, not to 

random mensuration error due to an image work-station operator or an automatic correlator, 

which must be accounted for separately.   

More specifically, the total support data error vector for a measured pixel location within an 

image, and with respect to WGS-84, is expressed as the sum of three error vectors (each vector 

with an expected value of zero and uncorrelated with the others):  e1 = the component that is 

common to all images taken from the same orbital pass; e2 = the component that is common to 

all points that lie on the same image; and e3 = the component that is random for each point.  

Each of these components or error vectors is two-dimensional, i.e., has two elements or axes.  

The two elements in a given error vector are also assumed to have the same one-sigma 

uncertainties and are uncorrelated with each other.   

Let s1, s2, and s3 be defined as the one-sigma uncertainties per element (axis) associated with 

e1, e2, and e3, respectively.  These three standard deviations can be considered sub-allocations 

of  ERR_BIAS and ERR_RAND,  heretofore termed eb and er, respectively.  Eb and er are 

contained in the RPC meta-data NITF tagged record extension, i.e., RPCB TRE.  However, two 

communities or groups, the “relative mensuration group” and the “target extraction group”, 

essentially in isolation from each other, developed two different interpretations of eb and er 

based on their particular interests or operational charters.   These two interpretations also 

correspond to the two documents, STDI-0002 and NNDDD. 
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The target extraction group was primarily interested in geolocating a single point at a time using 

one or two (same-pass) images.  Hence, relative mensuration and isolating the random error at 

each point (s3 in the previous paragraphs) was irrelevant.  They defined eb = s1, and er= 

rss(s2,s3)=sqrt(s2*s2 + s3*s3). Therefore, support data error corresponding to a pair of pixels, 

each in a different but same-pass image, is modeled as correlated between 0 to 100%, depending 

on the relative size of eb and er.  On the other hand, the support data error is modeled as 100% 

correlated for two pixels in the same image.  The standard deviation of (total) support data error 

for an arbitrary pixel location equals rss(eb,er).  Further note that the support data error statistics 

(eb and er) are assumed relative to a ground coordinate system perpendicular to the line-of-sight 

(image locus) vector, with expected magnitudes circular in this coordinate system. 

The relative mensuration  group was primarily interested in exploitation of a single image, 

typically involving simultaneous measurements of multiple points to obtain dimensions, e.g., 

runway length and/or width.  In the cases that they performed stereo point extractions, they had 

no requirement for rigorous error propagation that would make them care about considering 

correlation between a pair of images and whether it would result in correct error propagation.  (It 

is also likely that individuals within and between CI companies may also disagree about the 

degree to which same-pass images are correlated.)   

In other words, the relative mensuration group never felt the need to isolate the s1 component of 

uncertainty.  Hence, they defined eb = sqrt(s1*s1 + s2*s2), and er = s3.  Therefore, the support 

data error corresponding to a pair of pixels, each in a different but same-pass image, is modeled 

as uncorrelated.   The support data error for two pixels in the same image is modeled as 

correlated between 0 and 100%, depending on the relative size of er and eb .  The standard 

deviation of support data error for an arbitrary pixel location equals rss(eb,er) . Further note that 

the support data error statistics (eb and er) are also assumed relative to a local tangent plane 

ground coordinate system, with expected magnitudes circular in this coordinate system. 

Preliminary results by the SGC using real CI data shows that same-pass images are correlated 

approximately 70%; and the value obtained by evaluating temporal correlation functions used in 

CI-provided physical sensor models also yields approximately 70%.  So if we had to choose 

between non-zero (target extraction group) or zero (relative mensuration group) temporal 

correlation between images, the former is a closer representation.  (In fact, it can be made to 

match 70% or a more refined number based on future analyses.)  Hence, the STDI-0002 

document provides a more realistic definition of these error terms, namely that eb represents 

non-zero correlation between images.  However, correlation between two pixels in the same 

image remains 100%, a “short-coming” if one is interested in relative mensuration between two 

or more points in an image. 

That being said, in 2002 John Dolloff had written a proposed algorithm that is an adaptation to 

the target extraction group’s error model.  It uses a database constant, K, which is used to split er 

into its s2 and s3 components.  In this model, the eb term remains the same, i.e. equal to s1.  The 
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correlation coefficient between a pair of same-pass images is then equal to s1*s1/(s1*s1 + 

s2*s2+s3*s3).  The correlation coefficient between two pixels in the same image is 

(s1*s1+s2*s2)/(s1*s1+s2*s2+s3*s3).  And, of course, the standard deviation of support data 

error at an arbitrary pixel location is equal to sqrt(s1*s1+s2*s2+s3*s3).    

(Note: s3 corresponds to random error, and hence, its corresponding error e3 is not adjustable as 

part of an RPC adjustment model.  Thus, it can be alternatively assigned to (a portion of) random 

mensuration error, i.e., not considered an explicit portion of sensor support data error and 

sometimes termed “unmodeled error”.  If so, s3 is not included in the formulas in the previous 

paragraph.)   

An alternate but equivalent algorithm would involve adaptation of the relative mensuration 

group’s error model.  It could use a database constant, Kb, to split the eb into its s1 and s2 

components.  In this model, the er term would remain the same, i.e. equal to s3.  The correlation 

coefficient between a pair of same-pass images would then be equal to s1*s1/(s1*s1 + 

s2*s2+s3*s3),  the correlation coefficient between two pixels in the same image 

(s1*s1+s2*s2)/(s1*s1+s2*s2+s3*s3), and the standard deviation of support data error at an 

arbitrary pixel location is equal to sqrt(s1*s1+s2*s2+s3*s3) -  the same as the 2002 Dolloff 

algorithm for the target extraction group’s error model. 

Since we cannot add another field/number to the RPCB TREs, the value of the database constant 

(K or Kb) would have to be made known to all CI vendors and all tool vendors, and could also 

vary per sensor.  Furthermore, a specific algorithm would need to be extensively documented in 

order to explain how to generate and how to exploit the error terms.  In addition, the SGC 

recommends that the eb and er statistics should be relative to a common coordinate system for 

both groups’ error models.  The ground coordinate system is perpendicular to the line-of-sight or 

imaging-locus, not the local tangent plane. 

 

********************** ***************************************************** 

Status of RPC Error Model: Postscript 

SGC, July 2011 

Further analyses indicate that the relative variability of temporal correlation of systematic errors 

between same-pass images is much less than the relative variability of the magnitude of total 

unmodeled error for an image.  By relative variability, we mean variability from image to image.  

(Temporal correlation affects target extraction and unmodeled or random error primarily affects 

relative mensuration.)    

Thus, it follows that the basic design should be consistent with the “relative mensuration camp”.   

In particular, eb corresponds to RPC error considered systematic (a bias) across the image, and er 
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corresponds to RPC error considered uncorrelated (random) across the image.  That is, using 

earlier notation, eb = sqrt(s1*s1 + s2*s2), and er = s3. 

However, there is an addition to the above design commensurate with the requirements of the 

“target extraction camp”: Temporal correlation of RPC systematic error between images will be 

available.  It will be represented by a pre-computed correlation function and published by the 

image vendor per sensor.  (This is actually a generalization of a pre-computed correlation 

coefficient value as represented by either a data base parameter K or Kb, discussed  above in the 

“Status of RPC Error Model, SGC, 14 March 2011”.) 

There is also another addition along these same lines that provides for higher fidelity 

representation of RPC intra-image errors in order to further support the “relative mensuration 

error camp”.  A correlation function for RPC total unmoldeled errors will be available, also 

published by the image vendor per sensor.  It is a function of delta-line and delta-sample between 

two points in the same but arbitrary image.  This function allows for the representation of higher 

relative accuracy between two points closer together than for two points farther apart. 

Both the above correlation functions are to be rarely changed by the vendor and are described 

further in Appendix G. 

The remaining design issue was which ground plane should RPC uncertainty parameters 

reference – the local horizontal tangent plane (“LTP”) or a plane perpendicular to the image line-

of-sight vector (“PER”)?  The “firm” conviction that “PER” was the best choice indicated earlier 

in “Status of RPC Error Model, SGC, 14 March 2011” was reconsidered and a trade-study 

performed (see Appendix K).  It indicated that “LTP” is a slightly better choice considering the 

relative benign nature of commercial satellite imaging (imaging angles). 

The above overall design presented in this “Postscript” is reflected in the main body of this 

document.  That is, in both in both the generation and the application of RPC uncertainty 

parameters.   

Finally, the two interpretations of the RPCB TRE discussed earlier in “Status of RPC Error 

Model, SGC, 14 March 2011” are presented in detail in Appendix C.  The actual fields and 

formats are the same for the two interpretations;  however, the corresponding descriptions of the 

uncertainty parameters differ.  For the recommended SGC design, their proper definition is as 

above in this “Postscript”, and in conjunction with the published correlation functions not 

explicitly contained in the TRE. 
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Appendix C: RPC00B TRE Description 

 

The following excerpt describes the relevant portions of the RPCB (RPC00B) TRE – see [3] for 

the latest and entire TRE.  It corresponds to STDI-0002, and correspondingly, to the “target 

extraction group” interpretation discussed earlier in Appendix B.     

(The NNDDD presents the RPCB TRE that corresponds to the “relative mensuration group” 

interpretation, where eb (ERR_BIAS) is assumed to correspond to uncorrelated images.) 

 

 

--------------------------------------------------Excerpt------------------------------------------------ 
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Appendix D: Unmodeled Errors 

 

Unmodeled errors consist of errors that cannot be practically characterized by (errors in) the 

physical sensor model’s image support data adjustable parameters.  They consist of: 

 (1) High frequency variations in (true) image support data associated with the exterior 

orientation of the sensor; inherent with the imaging system and/or due to interpolation error of 

the (a piori) image support data provided as part of the physical sensor model. 

(2) A priori image support data interior orientation errors, such as chip alignment errors. 

(3) Errors resultant from mapping the representation of image support data adjustable parameters 

from a higher fidelity set to a lower fidelity set for the physical sensor model, when applicable. 

Total unmodeled error includes the above plus RPC polynomial fit error relative to the physical 

sensor model’s g2i function.   

For the generation of RPC uncertainty parameters, total unmodeled errors are uncorrelated 

between images but can be correlated between two different locations within the same image, as 

specified by the vendor supplied correlation function             detailed in Appendix G.  For 

example, we expect that polynomial fit error has a common component at two locations within 

the same image a relatively short distance apart.  Thus, we expect correlation to be higher than 

for two locations far apart in the image – say a correlation of 0.7 versus 0.0.  Correspondingly, 

relative accuracy will be higher (better) when the two points are close together; for example, 

corresponding to two points at the ends of a feature of interest with a dimension on the order of 

25 meters. 
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Appendix E: Conversion of the Physical Sensor Model: Unrectified to Rectified Image  

 

This appendix describes how to convert a physical sensor model relative to an unrectified 

(original) image to a physical sensor model relative to a rectified image.  In the following, we 

use the superscript *  to represent scalars, vectors, matrices, and functions associated with the 

physical sensor model for the rectified image. 

Let      map the 2x1 unrectified image coordinates         to the 2x1 rectified image 

coordinates           , i.e.,        .  We assume that the function      is given.  Note that 

this function is two-dimensional; in particular, a two-dimensional output given a two-

dimensional input. 

Also, given the original ground-to-image function           , we have             

         .   

The image-to-ground function for the rectified image is      and is defined as the iterative 

inverse of     . 

Define the 2x2 matrix    as the partial derivatives of    with respect to i corresponding to ground 

point j, i.e., the partial derivative of      with respect to i evaluated at the appropriate operating 

point (value of i corresponding to ground point j). 

Given the original 2x3 matrix     of partial derivatives of i with respect to ground location   

corresponding to ground point j, the 2x3 matrix of partial derivatives of    with respect to X is 

   
       . 

The physical sensor model’s adjustable parameters and their error covariance are identical for the 

two images.  Therefore: 

Given the original 2xn matrix     of partial derivatives of i with respect to physical sensor model 

adjustable parameters S corresponding to ground point j, the 2xn matrix of partial derivatives of  

   with respect to physical sensor model adjustable parameters S is     
       . 

In addition, given the original 2x2 unmodeled error covariance corresponding to ground point j 

and 2x2 unmodeled error cross-covariance between ground points j and k,      and      , 

respectively, the corresponding matrices with respect to rectified image coordinates are    
  

        
  and     

          
 , respectively. 

 

Note: In the above, we are addressing rectified imagery, not ortho-rectified imagery.  As such, 

for rectified imagery, an additional effect due to elevation uncertainty is not included in RPC 
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uncertainty parameter generation.  The generation process is implemented exactly as documented 

in Section2, using the physical sensor model described above.   Also, elevation uncertainty is 

automatically accounted for in monoscopic extraction, exactly as documented in Section 3. 
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Appendix F: Evaluation of CE and LE 

 

The appendix describes the procedure to compute the scalar 0.9p circular error value CE and 

related statistical metrics.  The procedure is relatively simple and fast. 

 

Evaluate the function   {   } , where the argument Cov is a 2x2 covariance matrix: 

Determine the two eigenvalues of Cov.  Compute r equal to the square root of the ratio of the 

smallest eigenvalue to largest eigenvalue.  Interpolate r into a predetermined table (see below) to 

obtain a scale factor k.  CE equals k times the square root of the largest eigenvalue.  

r 0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

k 1.64 1.65 1.65 1.65 1.66 1.67 1.67 1.69 1.70 1.72 1.74 

r .55 .6 .65 .70 .75 .80 .85 .90 .95 1.0  

k 1.76 1.79 1.83 1.86 1.90 1.95 1.99 2.04 2.09 2.15  

 

The above table was generated by numerically solving the following equation for k over a range 

of values for r:   

      
 

  
∬                 

 

 √         

 

The equation was derived assuming a mean-zero Gaussian (normal) joint distribution of errors 

and using eigenvector/eigenvalue analysis (Cov becomes a diagonal matrix with eigenvalues on 

the diagonals when transformed to an eigenvector aligned coordinate system). 

Note that when CE is to correspond to 0.9p horizontal error and we are given CovX, the 3x3 

ground point error covariance matrix in local tangent plane coordinates, simply set Cov to the 

upper left 2x2 of CovX and proceed as above.   

 

We can also compute LE which corresponds to 0.9p vertical error as follows using the lower 

right 1x1 of CovX:    {    }                     . 
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Appendix G: Generation of Correlation Functions 

 

This appendix details the functional form of the correlation functions          and 

           , the recommended method for their generation by the image vendors, and various 

examples. 

 

General Functional form 

Both the temporal correlation function          and the pixel location correlation function 

            are represented by “CSM four parameter” correlation functions.  A general “CSM 

four parameter” function is specified by the values of four parameters {       } as follows:  

       [  
          

   
  

 ⁄
]         (G1) 

(The above assumes that the correlation function       is a temporal correlation function for 

convenience, i.e., a function of     , the absolute value of the time difference between two 

images.) 

There are also restrictions on the ranges of the four parameters such that the correlation function 

is valid, i.e., a strictly positive definite correlation function (spdcf): 

     ,       ,        , and    .        (G2) 

Also,          ,                  , where epsilon is an arbitrarily small positive 

number, and           , where    is the function’s “floor” value.   

(An exception to the ranges in equation G2 is that     is also allowed if    .) 

Note that a value of A<1 corresponds to a stochastic process that includes a totally random (white 

noise) component, and a value of     corresponds to a stochastic process with a strictly bias 

component. 

The following figure presents typical examples corresponding to A=1 and    : 
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Figure G-1: Examples of “CSM four parameter correlations functions (A=1; alpha=0; beta =0, 1, 

and10; T=100 sec) 

See References [4]-[5] for more detail on the “CSM four parameter” correlation function.  See 

Reference [6] for further information on spdcf and imagery-based applications.   

Note: the above references use a slightly different form for the CSM four parameter correlation 

function than the form of Equation G1.  The former form is compatible with the CSM 2.A 

version of the API, whereas the form of Equation G1 is compatible with CSM 3.0.1 version of 

the API.  For completeness, the former form is presented as follows:          
          

       , 

with valid parameter ranges identical to those corresponding to form G1. 

 

Temporal correlation function 

         has the functional form of Equation G1, and is specified by the values of the four 

parameters {       }.  The independent variable    is the absolute value of the time difference 

between two images on the same pass. 

The effect of temporal correlation of errors on stereo error propagation is significant – see Table 

A-11 of Appendix A for examples.  

The image vendor should generate          by considering the “CSM four parameter” 

correlation functions associated with the underlying physical sensor model’s adjustable 

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
three exaamples of "CSM four parameter" correlation functions

delta time (seconds)

c
o
rr

e
la

ti
o
n



 

36 
Approved for Public Release: Case # 11-463 

parameters.  There can be multiple correlation functions associated with the physical sensor 

model, one for each independent (uncorrelated) group of adjustable parameters.  If one such 

group is dominant, i.e., dominates the overall physical sensor model uncertainty, then          

may simply be defined as that group’s correlation function.  For example, for some commercial 

satellite sensors, the group of attitude adjustable parameters may dominate. 

However, if more than one group of physical sensor model adjustable parameters are relevant, 

then          should be defined based on a weighted average of the corresponding correlation 

functions.  For example: 

       ∑   {   
 
         

 }    ∑   {   
 
         

 }        ,      (G3) 

where i corresponds to the subgroup, and      ,     , and     the corresponding error covariance, 

partial derivative matrix of image coordinates with respect to the adjustable parameters, and the 

“CSM four parameter” correlation function, respectively, for subgroup i and for a typical image 

for the relevant sensor.  (  { } is the matrix trace.) 

      in Equation G3 defines a function, but not necessarily of the correct form.  Thus, the 

actual RPC correlation          is defined by the values of four parameters (       ) 

determined by their best fit to      . 

Default values 

If the four parameters defining the temporal correlation function are not available (published by 

the appropriate vendor), their default values are as follows for WorldView and GeoEye imagery: 

WorldView - {       }={             } 

GeoEye - {       }={             }. 

Note that for typical delta time between stereo images on the same pass, the above yield an 

approximate correlation value of             , or 70%.  Also, the above default values are 

independent of the particular function form for the temporal correlation function (compatible 

with either CSM 2.A or CSM 3.0.1) since     and    . 

Reference [7] provides further insight into these default values and their effect on error 

propagation (accuracy prediction). 

 

Pixel location correlation function 

            is defined as the product of two “CSM four parameter” correlation functions, one a 

function of  the absolute value of delta-line (  ), and the other a function of the absolute value of 

delta-sample (  ): 
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                                      (G4) 

The two sets of four parameters {       } that define            , one set corresponding to 

          and the other to          , are to be computed such that             approximates 

the correlation of RPC total unmodeled error between two pixel locations in the same image.  

This error is the sum of two errors, unmodeled error and RPC polynomial fit error.  Unmodeled 

error is associated with the underlying physical sensor model.   

Thus, the vendor should determine             by taking the weighted average of a pair of 

correlation functions.  These two functions are defined as follows and are also represented by 

“CSM four parameter” correlation functions:  

(1)                                         , corresponding to the physical sensor 

model’s unmodeled error, and 

                                            , corresponding to polynomial fit error for 

both a typical image and the image vendor’s polynomial fit process.   

The vendor must first determine both                and                and then weight 

them by the expected variance of error associated with both error processes: 

         
   
                   

                

   
     

       (G5) 

         in Equation G5 defines a function, but not necessarily of the correct form.  Thus, the 

actual correlation function                                  is determined by the values 

of two set of four parameters (       ) determined by their best fit to         . 

(Note that the fidelity of the vendor-published             is dependent of the applicability of 

the a priori weighting of                and               ,  i.e., on the relative invariance 

of the a priori unmodeled error variance to the a priori polynomial fit error variance across 

images.) 

Generation and use of             allows for better relative error (high positive correlation) at 

two locations close together in the same image as opposed to two locations far apart (low 

positive or zero correlation) in the same image.   Its form as a product of two correlation 

functions, one a function of delta-line and the other delta-sample, allows for different correlation 

characteristics in the two directions. 

The following is a simple hypothetical example of a correlation function corp based on the 

assumptions:  

(1) unmodeled errors are uncorrelated across the image, i.e.,                  

(2) a 2:1 ratio of polynomial fit (one-sigma) errors to unmodeled (one-sigma) errors 
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(3)                                    

(4)             (
  

     
)                (

  

     
)                 

                                                                   

(5) the corresponding sets of 4 parameters {       ) that specify             are 

{sqrt(0.8),0,0,2000} and {sqrt(0.8),0,0,1000} 

Figure G-2 plots            : 

 

Figure G-2: Example of             

In order to examine the approximate effect of              on monoscopic relative error 

propagation, we consider only the effects of the 4x4 total unmodeled error covariance matrix  

[
         

     
     

] in Equation (23) for      in the main body of this document.  That is, we 

realistically assume that the effects of RPC systematic error are small, and that unmodeled error 

dominates mensuration error at the two locations.  We further assume for simplicity that image 

coordinates map directly to horizontal ground coordinates.   

Finally, we assume that the 2x2 diagonal blocks (     and      ) of the total unmodeled error 

covariance correspond to diagonal matrices with 1 meter-squared down the diagonals (er=1), and 

that the 2x2 cross-block (      ) is computed using the specific             presented above.   
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Corresponding relative horizontal CE is presented in Figure G-3.  Note the improved relative 

accuracy (smaller CE) for two points close together in the same image. 

 

Figure G-3: Example of the Effect of             on Relative Accuracy 

 

Default values 

If the two sets of four parameters defining the pixel location correlation function are not 

available (published by the appropriate vendor), their default values (to be refined) are as follows 

for both WorldView and GeoEye imagery: 

{       }-line ={                 }-line; {       }-sample ={                  }-

sample. 

Note that the above yield a (combined) approximate correlation value of                   

for                                and                  for         

                       . 

The default values assume higher correlation of error in the sample (cross-scan) direction. 

Also, the above default values are independent of the particular function form for the pixel 

location correlation function (compatible with either CSM 2.A or CSM 3.0.1) since     and 

   . 
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Reference [7] provides further insight into some of these default values and their effect on error 

propagation (accuracy prediction). 
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Appendix H: Ancillary Stereo Computations 

 

This appendix discusses: (1) the complete WLS solution for stereo images, (2) an RPC 

adjustment model with more adjustable parameters than the baseline set, and (3) miscellaneous 

comments concerning equivalences, approximations, and use of a previously adjusted RPC 

sensor model, i.e., the use of a posteriori RPC adjustable parameter values and corresponding 

error covariance. 

 

Complete WLS solution 

Section 4.4 presented error propagation equations only, i.e., the computation of      for stereo 

imagery.  The following presents the integrated complete weighted least squares (WLS) solution 

which includes the best estimate of the ground point location   and the corresponding error 

covariance      .  (The equation for        presented here is equivalent to that presented in the 

main body of the document.)  Although not presented here, the solution (  and  ) is typically  

iterated about a (new) operating point (a priori ground location   ) .  The following utilizes the 

notation previously defined in Section 4 as well as some generalizations. 

Define the 4x4 measurement weight matrix as:  

  ([
    
    

] [
          

     
      

] [
   

  

    
 ]  [

     
     

]  [
   
   

])

  

 

Define the 2x1 a priori measurement residual vector as: 

       ̂  ,      , and where the 2x1 vector  ̂ corresponds to the predicted measurement 

corresponding to the a priori ground location    , i.e.,  ̂          , and the 2x1 vector    is 

the actual measurement, i.e.,       [    ]  . 

Concatenate the partial derivative matrices and residual vectors as follows for convenience: 

   [
   

   
] and  [

  

  
] . 

The complete weighted least squares solution is: 

        
     

   

 ̂              
    . 
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(Note: the above complete stereo solution is easily extended to a simultaneous solution for 

multiple ground points, but not detailed here.) 

(Note: of course, for mono extraction, the best estimate or weighted least squares solution  ̂ for 

the ground point is simply the output of the i2g function.  This is also true for simultaneous 

extraction of multiple ground points in the same image.) 

Additional RPC adjustable parameters 

If there is an RPC adjustment model that includes more than image offsets (one in the line 

direction and one in the sample direction), the above WLS solution for the ground point’s 

location and corresponding error covariance can be modified appropriately.  (However, image 

offsets alone are generally preferred for WLS (target extraction) solutions, whether 

corresponding to mono or stereo extractions.) 

 Let us assume that the RPC adjustable parameters also include rate terms.  We also assume for 

simplicity that the RPC model has not been previously adjusted by a down-stream adjustment 

process after its initial generation; thus, values for the RPC adjustable parameters are zero.   

(The following equations also serve to define the values output via a corresponding RPC CSM 

plugin.  In addition, they serve as a roadmap or guideline for implementation of an adjustment 

process for the RPC, i.e., to a registration or “triangulation” which computes non-zero values for 

the RPC adjustable parameters.  The addition of rate terms is generally preferred for an 

adjustment process.) 

Define the RPC adjustable parameters for an image as the components in the vector  

[            ]
  , and where their effects on image coordinates is as follows: 

         
       

         
       . 

      are normalized image coordinates ranging in value from -1 to +1 across the image in the 

line and sample directions, respectively.  The units for all six adjustable parameters is pixels. 

Define the 2x6 matrix of partial derivatives of image coordinates with respect to the RPC 

adjustable parameters for image j as follows: 

    [
        
        

]. 

Define the 6x6 RPC a priori error covariance matrix with respect to the RPC adjustable 

parameters for each image        as: 
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       {      
 }     

  [

    
   

       
  

        
 

]  ,  where  

   is the previously defined  2x2 matrix of partial derivatives of image coordinates with respect 

to horizontal ground plane coordinates at the center of the image.  The parameter   allocates a 

portion of RPC uncertainty to the rate terms, while leaving the allocation to the offset terms 

unchanged.  This leaves the a priori absolute uncertainty at the center of the image unchanged, 

but increases a priori absolute uncertainty (somewhat pessimistic) at the ends of the image. Also, 

due to the addition of the rate terms       , a priori relative uncertainty corresponding to two 

arbitrary points in the same image increases with distance between the points.  A recommended 

default value for   is 0.25.  (Note that both   and the default value for          should be 

specifiable data base parameters.) 

Define the 6x6 RPC a priori error cross-covariance matrix with respect to the RPC adjustable 

parameters between the two images as: 

      {      
 }          [

    
   

       
  

        
 

]  ,            . 

Note that the full two-image RPC adjustable error covariance   [
          

          
] is a valid 

12x12 covariance matrix.  In particular, there are three groups of uncorrelated adjustable 

parameters: line and sample offset, line and sample rates with respect to normalized line, and line 

and sample rates with respect to normalized sample.  Each of these groups references four 

adjustable parameters, two for each image, and each of these groups has a valid 4x4 sub-

covariance in  .  As an example, the sub-covariance for the line and sample offsets is equal to: 

        [
   

     
            

 

           
    

     
 ]  [

   
   

] [
   

                
              

     
] [

   
   

]
 

 

which is clearly a valid covariance matrix since the    have full rank 2 and the correlation value 

is assumed via a strictly positive definite correlation function.  Thus, a valid 4x4 covariance 

matrix is pre and post multiplied by a full rank 4 transformation matrix and its transpose, 

respectively, which yields a positive definite and symmetric matrix, i.e. a valid 4x4 covariance 

matrix         . 

The 4x4 image measurement weight matrix is then defined as the inverse of the total image error 

covariance due to the combined effects of RPC adjustable parameter uncertainty, RPC total 

unmodeled error, and image mensuration error for both sets of image coordinates: 
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  ([
    
    

] [
          

     
      

] [
   

  

    
 ]  [

     
     

]  [
   
   

])

  

. 

The complete wls solution is: 

        
     

   

 ̂              
    . 

 

Equivalences, approximations, and a posteriori data 

Note that when only two RPC adjustable parameters, line offset and sample offset, the above 

computation for       is equivalent to that presented in Equation (35) in the main body of this 

document which corresponds to the baseline RPC adjustment model. 

Further note that there is an alternate form for      , regardless the number of RPC adjustable 

parameters:             
   

     
   

 , where the superscript ½ indicates matrix (principal) square 

root.  However, this can yield different results than the form presented above if    differs 

significantly (e.g., in sign sense) from   .  (Recall that          
     

  .)  This is because, in 

general, (    
 )

   
    and      

          
          

  .  However, the alternate form should 

yield very similar results if the line/sample directions for the two images are approximately 

aligned geographically; in which case,       , and      
          

          
 .  (This is 

confirmed in Table K-2 of Appendix K.) 

Finally, note that all the above WLS solutions in this appendix assume that the RPC sensor 

model is unadjusted, i.e., a “downstream” RPC registration/triangulation has not been performed 

previously.  If it had, all the general equations are still applicable; however, the predicted 

measurements are first adjusted based on the non-zero values of the RPC adjustable parameters, 

and the RPC adjustable parameter error covariance is an a posteriori error covariance from the 

registration/triangulation process, not an a priori error covariance. 
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Appendix I: Calculation of non-baseline x*-y* directions 

 

This appendix presents the calculations of the x*-y* directions and corresponding A matrix for a 

ground plane perpendicular to the line-of-sight vector instead of the baseline horizontal ground 

plane.  If one were to implement this method in order to represent RPC uncertainty, all of the 

previous generation and extraction/algorithms presented in the main body of this document do 

not change, other than calculation and use of this new A matrix. 

Generation and mono error propagation 

The following matrix is defined as the 2x2 partial derivative matrix of image coordinates with 

respect to ground plane coordinates for grid point i.  The ground plane is perpendicular to the 

image line-of-sight vector. 

   
        

 (  
    

 )
           (I1)  

The   -    plane corresponding to an arbitrary grid point is illustrated in the following Figure I-

1: 

 

Figure I-1: RPC Uncertainty is represented in a plane perpendicular to the line-of-sight vector 

The primary x-y-z ground coordinate system is assumed WGS-84 ECF, the coordinate system of 

the i2g output and g2i input via the CSM API. (When    is used as an input to an image-to-

ground call, it is assumed (converted to) an elevation.) 
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The directions    and    are expressed in the primary coordinate system and are computed as 

follows, where      is the unit line-of-sight vector in the primary coordinate system and 

corresponds to grid point  : 

     
                               

‖                               ‖
        (I2)  

Convert the above      to a local tangent plane representation:               , where        is 

the 3x3 primary to local coordinate system (orthonormal) transformation matrix applicable at the 

ground (grid) point’s nominal location                   .      

  
  

     [   ] 

‖     [   ] ‖
          (I3)  

  
         

           (I4) 

   

The above calculations utilize the vector cross-product   , and are based on the assumption that 

     [    ] , otherwise set   
  [    ]  and   

  [    ] . 

Convert   
  and   

  from a local tangent plane representation to a primary coordinate system 

representation:   
       

   
  and    

       
   

  .              (I5)  

                           (I6)  

             
           (I7)  

             
           (I8)  

[
   

   
 

   

   
 ]

 

 
                 

  
        (I9)  

[
   

   
 

   

   
 ]

 

 
                 

  
        (I10) 

    [

   

   
 

   

   
 

   

   
 

   

   
 

]          (I11) 

The above A matrix is suitable for RPC uncertainty parameter generation and for mono error 

propagation.  (The latter uses the a priori location for the ground point to be extracted instead of 

the grid point.)  However, unlike for the baseline method, two different x*-y* coordinate system 

definitions are required for stereo error propagation.  The following details corresponding 

calculations. 

Stereo error propagation 
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The following describes the computation of the 2x2 matrix of partial derivatives of image 

coordinates with respect to ground plane coordinates. There are two such matrices, 

corresponding to a ground plane perpendicular to the image line-of-sight vector at the center of 

each image      . 

Specifically, there are two sets of ground plane coordinate systems:    
    

   and    
    

  , 

corresponding to    and    , respectively.  The coordinate systems cannot be the same and also 

perpendicular to their corresponding unit line-of-sight vectors.  Thus, define:  

  
  in the direction of             ,             (I12) 

  
  in the direction of                  ,       .     (I13) 

Unitize the resultant   
  and    

 ,       .         (I14) 

The computations I12-I14 are made with vectors represented in the primary coordinate system, 

including the line-of-sight vectors, for efficiency.   Once computed, the x*-y* directions are then 

defined, and Equations I7-I11 then implemented in order to complete the derivation of    , j=1,2.   

Note that the x* directions are in the approximate stereo epipolar direction. 

See Appendix J for further discussion on the selection of the    
    

   and    
    

   ground plane 

coordinate systems and their effect on error propagation.  See Appendix K for the trade regarding 

use of the baseline horizontal ground plane versus use of a ground plane perpendicular to the 

line-of-sight vector in order to represent RPC uncertainty. 
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Appendix J: Selection of x*-y* directions 

 

This appendix addresses the effects that the selected x*-y* directions have on RPC uncertainty 

generation and error propagation.  These directions are contained in the ground plane selected to 

represent RPC uncertainty.   

The first part of the appendix (first two subsections) addresses the effects regarding generation of 

RPC uncertainty parameters and monoscopic error propagation.  It will be shown that results are 

invariant to the particular ground plane selected, i.e., either the baseline horizontal tangent plane 

or alternatively a plane perpendicular to the imaging line-of-sight vector.  It will also be shown 

that it doesn’t matter which particular x*-y* directions are selected as long as they are 

perpendicular to each other and in the same ground plane. 

The second part of the appendix addresses stereo error propagation.  It will be shown that the 

specific directions chosen for x*-y* do affect results.  It will also be shown that highest fidelity 

results correspond to the baseline method which uses the horizontal tangent plane for each image 

and common x*-y* directions (e.g., south and east, where south corresponds to approximate 

direction of flight and epipolar direction).  If a ground plane perpendicular to the imaging line-

of-sight vector (different for both images) is selected instead, the best x*-y* directions are 

presented which, by necessity, must differ between the two images in at least one-component.  

 

Generation of er, eb 

For an arbitrary ground (grid) point, assume a new direction x’*-y’* in the ground plane (either 

the baseline horizontal tangent plane or alternatively a plane perpendicular to the line-of-sight 

vector) related to the original x*-y* directions by a 2x2 orthonormal transformation   ; its 

corresponding      
 (       )

      
 

 (       )

        

        

      
      .  Therefore (see Equation (1) in the 

main body of this document): 

  
      {          

     }           {           
       }       

    {         
     }          

  

The above is true since eigenvalues (not eigenvectors) are invariant under a similarity 

transformation (pre and post multiplication by   and   , respectively).  (See Meyer, C.D., 

Matrix Analysis and Applied Linear Algebra, pg 508, SIAM, 2008.)  This also implies that   {}  

is invariant since it is solely a function of the eigenvalues of the covariance matrix. 

Thus, the calculation of    (as well as     by similar analysis) is invariant of the selected x*-y* 

directions; correspondingly, the generation of er, and eb is also invariant. 
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Monoscopic absolute and relative error propagation 

Because          , this implies that             and       .  Therefore, the key 

component of monoscopic error propagation (see Equations (17) and (26) in the main body of 

this document) is equal to: 

                             ,  

i.e., invariant (a similar analysis is also applicable to     ). 

Thus, monoscopic absolute and relative error propagation are invariant to the particular x*-y* 

directions chosen by the error propagation function for the image.    

 

Stereo (absolute) error propagation 

However, for stereo error propagation when there is non-zero temporal correlation between the 

two images, results are not invariant to the selection of the x*-y* directions for the two images.  

Let us examine the key intermediate stereo error propagation quantity presented below, where    

corresponds to the center of image      , and was computed based on the ground plane 

selected to represent RPC uncertainty and the directions x* and y* contained in the plane.  In 

general, the x* and y* directions can differ between images. 

This intermediate error propagation quantity is the 4x4 error covariance matrix relative to image 

space and corresponding to the a priori uncertainty in the RPC adjustable parameters (see 

Equations (35), (38), and (40) in the main body of this document): 

[
          

     
      

]  [
    

      
              

 

             
     

      
 ]. 

By similar analysis as for monoscopic error propagation, the (scaled) diagonal blocks     
  are 

invariant to the particular x*-y* system chosen.  However, there can be a “problem” associated 

with the cross-block or cross-covariance between the two images. 

Let us reformulate the above as: 

 [
          

     
      

]  [
    

      
              

 

             
     

      
 ]  

[
   
   

] [
    

                   
                 

      
] [

  
  

   
 ]. 
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The interior matrix corresponds to the 4x4 error covariance of RPC sensor support data errors for 

the two images relative to the x*-y* ground plane coordinate systems.  These are “organic” RPC 

support data errors as represented in the ground planes for the two images. 

The cross term                 corresponds to the correlation of errors between the components 

of the two 2x1 organic RPC support data error vectors.  It is desirable that this same correlation 

is also applicable for an arbitrary but common geographic direction.  That is, we make the 

reasonable assumption that the effect of positive temporal correlation of support data errors 

should have the same geographically-aligned effect for both same-pass images.  In other words, 

whatever the effect of support data error for image 1 in a specific yet arbitrary direction in a 

geographically aligned 3D coordinate system, the (correlated) support data error for image 2 

should have the same effect in that direction.  However, this only occurs if the two x*-y* 

systems are the same, i.e., aligned, as demonstrated below:   

Let the 3x3 matrix    represent the transformation from the x*-y*-z* system corresponding to 

image   to a (common) 3D geographic system, such as a local tangent plane coordinate system.  

Let    [         ]  represent the 3x1 vector of RPC errors in the x*-y*-z* system.  (The 

uncertainty in the z* direction does not correspond to an RPC error.)  Let   
        represent this 

same error but as represented in the geographic system.  Let     
   represent the (unit) projection 

of this error along an arbitrary direction   in the geographic system.  The (scalar) cross-

covariance of the projected errors corresponding to the two images equals: 

 {    
      

   }     {  
   

  }       {    
 }  

       [
            

  
]   

   

        
   [

     
  

]   
   . 

The (scalar) variance for image j equals: 

 {    
 (    

 )
 
}     {  

   
  }       {    

 }  
      

     [
     
  

]   
   . 

Therefore, the correlation coefficient equals: 

        
   [

     
  

]  
  

((   
     [

     
  

]  
  )(   

     [
     
  

]  
  ))

      ,  which equals   for an arbitrary direction   if and 

only if       , which implies that the x*-y*-z* (hence, x*-y*) must be aligned for the two 

images.   

(Note that the variance for image j is greater than or equal to 0 since [
     
  

] is a rank 2 

positive semi-definite matrix,    [
     
  

]   
  is also a rank 2 positive semi-definite matrix since 
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   is full rank 3, and hence by the definition of positive semi-definite,      [
     
  

]   
     

for all non-zero vectors   ; correspondingly, there will also be a direction   for which there is 

zero uncertainty and hence,    undefined for that particular direction.) 

We obtain the desired property that x*-y* are aligned for the two images if the ground plane for 

each image is the local horizontal tangent plane corresponding to the center of the image and that 

the x*-y* directions are common in the two ground planes, i.e., south and east.  (The directions 

of x*-y* in the two planes when expressed in the primary coordinate system are not exactly the 

same but are very close since the image footprints overlap.) 

However, this is not the case if the ground planes selected for the two images are perpendicular 

to each image’s line-of-sight vector.  For this case, we make a realistic compromise that achieves 

approximately the same geographic support data error correlation for both same-pass images 

while maintaining perpendicularity to each image los.  Specifically, we define the x*-y* systems 

for the two images in a similar and geographic manner as follows:   

  
  in the direction of             ,              

  
  in the direction of                  ,       , where the   

  directions correspond to the 

approximate stereo “base”. 

The two x*-y* systems are closely, but not perfectly, aligned.  The above algorithm is that 

reflected in Appendix I. 

 (Note: all of the above stereo correlation analysis is unaffected by the direction of the image 

coordinate axes relative to geographic space.  Any effects are automatically handled via the    

matrices.) 

(Note: we expect the following dominant sensor support data errors to be geographically 

positively correlated for a same-pass pair of images: 

(1) sensor position errors 

(2) all sensor attitude errors (star tracker related and scanning related) if both images are scanned 

in the same direction (forward/forward or reverse/reverse) 

(3) star tracker related attitude errors regardless scan directions. 

Thus, in general and given no other ancillary information, we expect that the effect of total 

support data errors to be geographically positively correlated for a stereo pair of images.)   

(Note: for multi-image extraction/error propagation involving more than two same-pass images, 

there is no further complication if the baseline method is used.  However, if a ground plane 

perpendicular to the line-of-sight vector is used, compute the x*-y* directions (and A matrices) 
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as described above for each pair in imaging order.  And for an image with two sets of x*-y* 

directions (and A matrices), take their average.)    
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Appendix K: Trade Studies 

 

Two trade studies were performed and are documented in this appendix.  One was relatively 

simple and intuitive and concerned the definition of the RPC adjustable parameters.  Image-

space adjustable parameters were selected.  In particular, line and sample offset parameters, with 

RPC uncertainty as represented by er and eb mapped to adjustable parameter a priori uncertainty 

at the center of the image using the corresponding A matrix. 

The second trade study was more challenging – the selection of the ground plane used to 

represent RPC uncertainty. Its resolution involved both “operational” issues regarding the 

generation and application of RPC uncertainty parameters as well as metric performance 

comparisons between the two candidates.  The two candidates were: (1) the local horizontal 

tangent plane, and (2) a ground plane perpendicular to the imaging line-of-sight.  The former was 

selected for reasons detailed throughout this appendix and summarized at its end. 

The second trade study also explored some of the inherent characteristics and limitations of RPC, 

independent of the ground plane used to represent RPC uncertainty. 

 

THE REMAINDER OF THIS APPENDIX WAS REMOVED IN THIS VERSION OF THE 

DOCUMENT AS CONSIDERED: company sensitive. 


